1029. Two City Scheduling
Problem
Tags: Array
, Greedy
, Sorting
A company is planning to interview 2n
people. Given the array costs
where costs[i] = [aCosti, bCosti]
, the cost of flying the i^th
person to city a
is aCosti
, and the cost of flying the i^th
person to city b
is bCosti
.
Return the minimum cost to fly every person to a city such that exactly n
people arrive in each city.
Example 1:
Input: costs = [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation:
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.
The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.
Example 2:
Input: costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]]
Output: 1859
Example 3:
Input: costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]]
Output: 3086
Constraints:
2 * n == costs.length
2 <= costs.length <= 100
costs.length
is even.1 <= aCosti, bCosti <= 1000
Code
C
// 1029. Two City Scheduling (10/2/54199)
// Runtime: 2 ms (78.20%) Memory: 6.03 MB (63.53%)
int comp(int* a[], int* b[]) {
return ((*a)[0] - (*a)[1]) - ((*b)[0] - (*b)[1]);
}
int twoCitySchedCost (int* costs[], int costs_size, int* costs_col_size) {
qsort(costs, costs_size, sizeof(int*), &comp);
int total = 0;
int half = costs_size / 2;
for (int i = 0; i < half; i++) {
total += costs[i][0];
}
for (int i = half; i < costs_size; i++) {
total += costs[i][1];
}
return total;
}
JS
// 1029. Two City Scheduling (10/13/54199)
// Runtime: 65 ms (77.25%) Memory: 42.04 MB (77.59%)
/**
* @param {number[][]} costs
* @return {number}
*/
function twoCitySchedCost(costs) {
costs.sort((a, b) => (a[0] - a[1]) - (b[0] - b[1]));
return costs.reduce((sum, cost, i) => sum + cost[0 + (i >= costs.length / 2)], 0);
};
TS
// 1029. Two City Scheduling (10/14/54199)
// Runtime: 111 ms (25.16%) Memory: 44.16 MB (76.13%)
function twoCitySchedCost(costs: number[][]): number {
costs.sort((a: number[], b: number[]) => (a[0] - a[1]) - (b[0] - b[1]));
return costs.reduce((sum, cost, i) => sum + cost[i >= costs.length / 2 ? 1 : 0], 0);
};