53. Maximum Subarray
Problem
Tags: Array
, Divide and Conquer
, Dynamic Programming
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
Follow up: If you have figured out the O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.
Code
JS
// 53. Maximum Subarray (12/30/53712)
// Runtime: 88 ms (76.98%) Memory: 48.77 MB (94.79%)
/**
* @param {number[]} nums
* @return {number}
*/
function maxSubArray(nums) {
let max = nums[0],
current = nums[0];
nums.shift();
for (const n of nums) {
current = Math.max(n, current + n);
max = Math.max(max, current);
}
return max;
}