542. 01 Matrix
Problem
Tags: Array
, Dynamic Programming
, Breadth-First Search
, Matrix
Given an m x n
binary matrix mat
, return the distance of the nearest 0
for each cell.
The distance between two adjacent cells is 1
.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 10^4
1 <= m * n <= 10^4
mat[i][j]
is either0
or1
.- There is at least one
0
inmat
.
Code
JS
// 542. 01 Matrix (4/20/53733)
// Runtime: 188 ms (70.45%) Memory: 48.32 MB (94.90%)
/**
* @param {number[][]} mat
* @return {number[][]}
*/
function updateMatrix(mat) {
let queue = [];
for (let i = 0; i < mat.length; i++) {
for (let j = 0; j < mat[0].length; j++) {
if (mat[i][j] === 0) queue.push([i, j]);
else mat[i][j] = null;
}
}
const directions = [
[0, 1],
[0, -1],
[1, 0],
[-1, 0],
];
let level = 1;
while (queue.length) {
const length = queue.length;
for (let i = 0; i < length; i++) {
const [y, x] = queue.shift();
for (let [dy, dx] of directions) {
let ny = y + dy;
let nx = x + dx;
if (ny < 0 || ny >= mat.length || nx < 0 || nx >= mat[0].length || mat[ny][nx] !== null) continue;
mat[ny][nx] = level;
queue.push([ny, nx]);
}
}
level++;
}
return mat;
}